Evaluation of neural networks for residential load forecasting and the impact of systematic feature identification

نویسندگان

چکیده

Abstract Energy systems face challenges due to climate change, distributed energy resources, and political agenda, especially distribution system operators (DSOs) responsible for ensuring grid stability. Accurate predictions of the electricity load can help DSOs better plan maintain their grids. The study aims test a systematic data identification selection process forecast Danish residential areas. five-ecosystem CSTEP framework maps relevant independent variables on cultural, societal, technological, economic, dimensions. Based literature, recurrent neural network (RNN), long-short-term memory (LSTM), gated unit (GRU), feed-forward (FFN) are evaluated compared. models trained tested using different inputs forecasting horizons assess impact approach practical flexibility models. findings show that achieve equal performances around 0.96 adjusted R 2 score 4–5% absolute percentage error 1-h predictions. Forecasting 24 h gave an 0.91 increased slightly 6–7% error. depended type network, with FFN showing highest increase in when removing supporting variables. GRU LSTM did not rely identified variables, minimal changes performance or without them. researchers understand target variable. results indicate focus curating affects more than choosing specific architecture.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the impact of attending efl classes on the level of depression of iranian female learners and their attributional complexity

می توان گفت واقعیت چند لایه ا ی کلاس های زبان انگلیسی بسیار حائز اهمیت است، زیرا عواطف و بینش های زبان آموزان تحت تاثیر قرار می گیرد. در پژوهش پیش رو، گفته می شود که دبیران با در پیش گرفتن رویکرد فرا-انسانگرایی ، قادرند در زندگی دانش آموزانشان نقش مهمی را ایفا سازند. بر اساس گفته ی ویلیامز و بردن (2000)، برای کرل راجرز، یکی از بنیان گذاران رویکرد انسانگرایی ، یادگیری بر مبنای تجربه، نوعی از یاد...

the evaluation and comparison of two esp textbooks available on the iranian market for teaching english to the students of medicine

abstract this study evaluated and compared medical terminology and english for the students of medicine (ii) as two representatives of the textbooks available on the iranian market for teaching english to the students of medicine. this research was performed on the basis of a teacher’s and a number of students’ attitudes and the students’ needs analysis for two reasons: first, to investigate...

15 صفحه اول

the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology

abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...

15 صفحه اول

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy Informatics

سال: 2022

ISSN: ['2520-8942']

DOI: https://doi.org/10.1186/s42162-022-00224-5